Snow-avalanche hazard forecasting in the Krkonoše Mountains, Czechia

Jan Blahut (1), Jan Balek (1), Roman Juras (2), Jan Klimes (1), Zbynek Klose (2), Jiri Pavlasek (2), Jiri Roubinek (2), Petr Taborik (1), Petr Hajek (3)

(1) Dept. of Engineering Geology, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague, Czechia
(2) Dept. of Water Resources and Environmental Modelling, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia
(3) Institute of System Engineering and Informatics, University of Pardubice, Pardubice, Czechia
Aims of the project

• Creation of Snow avalanche hazard forecasting system
• Project of the Ministry of Interior (2013-2015)

• Main tasks:
 – Revision of traditional avalanche paths using RAMMS code and new LiDAR data;
 – Renewal of the snow avalanche database;
 – Historical analysis of snow avalanche hazard degrees and corresponding meteo and snow situation;
 – Creation of modular prediction system for the assessment of avalanche hazard
 – Creation of DSS for Mountain Rescue Service and National Park Administration
 – Creation of WebGIS for general public
 – Expanding from Krkonoše Mts. to other mountain areas in Czechia
Krkonoše Mountains

• relatively small mid-mountain range (454 km²)
• Maximum altitude 1602 m a.s.l. (Sněžka)
• Climatic conditions like Greenland coast (mean t~0°C, 130-180 days with snow pack)
Krkonoše Avalanches I

- more than 1100 avalanches in period 1961/62 – 2012/13 on 55 permanent avalanche paths
- every avalanche is classified according to International Avalanche Classification, including dimensions
- climatic and snow properties information for more than 50 years
- more than 150 people killed in last 100 years
Krkonoše Avalanches II

- 55 traditional avalanche paths
- Mountain Rescue Service responsible for hazard level prediction
- Krkonoše National Park Administration is responsible for land management and is collecting avalanche data
- Czech Hydro-meteorological Institute is collecting meteo data
Project workflow

Calibration Data
- Validation Data
 - LiDAR

Historical Database Data 1961 - 2013
- Avalanche Records
- Meteo Data
- Snow Pit Records

Avalanche Runout Model - RAMMS
- Avalanche susceptibility model
- Snow Development Model
 - Fitting of validated model

Avalanche Hazard Model (Ensemble)

Refresh every 12/24h

Avalanche Hazard Forecast

Feedback

Public Platform Apps

Distribution

Mountain Rescue Service Decision Making

5 Extreme
4 High
3 Considerable
2 Moderate
1 Low
Modrý důl Valley

- Traditionally high snow accumulation (up to 14 m) on leeward slope
- In the period 1961/62 - 2012/13 16 registered and documented avalanches
- 8 deaths up to present (1918, 1931, 1935, 1942, 1952)
- Highest triggering height 3 m
- Most frequent triggering height 1 m
- Longest avalanche from 3rd February 1985 ($l=600$ m, $w=150$ m)
- triggering height 1 m
- results l=680 m, w=260 m
Modrý důl Valley - largest recorded avalanche

- triggering height 3 m
- results l=1200 m, w=400 m
Revision of traditional avalanche paths
Snow avalanche susceptibility analysis

• Decision Tree method using C4.5 algorithm (Quinlan 1993)
• 5 m DEM (and derived data: slope, aspect, curvature, roughness, etc.)
• Forest coverage data
Snow avalanche susceptibility analysis – results I

• 95% of avalanches in less than 10% of the area
• Area under SRC – 96.96 %
• Area under PRC – 95.72 %
• Classification threshold probability of 0.99
Snow avalanche susceptibility analysis – results II
Runout modelling - approach

- Flow-R regional model (Horton et al. 2013)
- Avalanche runout based on modified modified Holmgren algorithm (Holmgren 1994) for spreading assessment and Perla et al. (1980) friction model
- Sources from susceptibility modelling
- $M/D = 2500; \mu = 0.27; \text{max velocity } 35 \text{ m/s}$
Runout modelling - results
Snow distribution modelling

- HBV-ETH model using Degree-day or Energy balance approach
- Degree-day is much simpler and less data demanding
- Energy balance shows near-real results but the model is highly data demanding (Walter et al. 2005)

1st February 2012

1st May 2012
Snow stability modelling

- SNOWPACK (Lehning et al. 2002) is being used for reconstruction of the snowpack evolution including grain type, temperature, size, density and viscosity of the snow layers
- Model is currently being calibrated with historical data from available snowpits
Through a WebGIS!
Conclusions

- Permanent avalanche paths area have been re-assessed (and are usually larger than mapped)
- Snow avalanche susceptibility model showing potential release zones has been calculated
- Snow avalanche runout potential has been calculated (showing avalanche potential even in currently forested areas)
- Snow distribution model using Energy balance algorithm is under testing using historical data
- Snowpack evolution model is under calibration using historical data
- We have started the process of putting all the puzzle pieces together using a WebGIS platform (www.laviny.info)
Thank you for your attention!

Bialy Jar avalanche 20th March 1968 - 16 victims